# LeetCode 303、区域和检索-数组不可变
# 一、题目描述
给定一个整数数组 nums
,处理以下类型的多个查询:
- 计算索引
left
和right
(包含left
和right
)之间的nums
元素的 和 ,其中left <= right
实现 NumArray
类:
NumArray(int[] nums)
使用数组nums
初始化对象int sumRange(int i, int j)
返回数组nums
中索引left
和right
之间的元素的 总和 ,包含left
和right
两点(也就是nums[left] + nums[left + 1] + ... + nums[right]
)
示例 1:
输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
提示:
1 <= nums.length <= 10^4
-10^5 <= nums[i] <= 10^5
0 <= i <= j < nums.length
- 最多调用
10^4
次sumRange
方法
# 二、题目解析
# 三、参考代码
Java
class NumArray {
// 前缀和数组
int[] sums;
public NumArray(int[] nums) {
int n = nums.length;
// sums[ i ] 表示数组 nums 从下标 0 到下标 i - 1 的所有元素之和
sums = new int[n + 1];
// 初始化 sums 数组
for (int i = 0; i < n; i++) {
sums[i + 1] = sums[i] + nums[i];
}
}
public int sumRange(int i, int j) {
// sums[ j + 1 ] 表示数组 nums 从下标 0 到下标 i 的所有元素之和
// sums[ i ] 表示数组 nums 从下标 0 到下标 i - 1 的所有元素之和
// 两者一相减得到结果
return sums[j + 1] - sums[i];
}
}
C++
class NumArray {
public:
vector<int> sums;
NumArray(vector<int>& nums) {
int n = nums.size();
sums.resize(n + 1);
for (int i = 0; i < n; i++) {
sums[i + 1] = sums[i] + nums[i];
}
}
int sumRange(int i, int j) {
return sums[j + 1] - sums[i];
}
};
Python
class NumArray:
def __init__(self, nums: List[int]):
self.sums = [0]
_sums = self.sums
for num in nums:
_sums.append(_sums[-1] + num)
def sumRange(self, i: int, j: int) -> int:
_sums = self.sums
return _sums[j + 1] - _sums[i]